

BAULKHAM HILLS HIGH SCHOOL

2013 HSC Assessment Task 1

Mathematics Extension 1

General Instructions

- Reading time 5 minutes
- Working time 50 minutes
- Write using black or blue pen
- Board-approved calculators may be used
- Marks may be deducted for careless or badly arranged work
- Attempt all questions

Total marks -

This paper consists of TWO sections.

Section 1 – Multiple Choice

4 Marks: Answer by shading the appropriate circle in your answer booklet

Section 2 – Extended Response 33 marks

Attempt all questions Answer each question on the appropriate page of your answer booklet. Show all necessary working.

Section 1 – Multiple choice (4 marks)

Attemp	t all	questions.
riccinp	t and	questions.

		Marks
1	If two polynomials have degrees m and n respectively, and $m < n$, what is the maximum number of points of intersection of their graphs? (A) m (B) n (C) $m+n$ (D) $n-m$	1
2	The polynomial $P(x) = 2x^3 - 9x^2 + 13x + k$ is divisible by $x - 2$, and k is a constant. $P(x)$ is also divisible by:	1
	(A) $2x - 1$ (B) $x + 1$ (C) $x - 1$ (D) $x + 2$	
3	If one root of the equation $x^3 - 5x^2 + 5x - 1 = 0$ is $2 - \sqrt{3}$, then the sum of the other two roots is:	1
	(A) $-7 + \sqrt{3}$ (B) $-1 + \sqrt{3}$ (C) $3 + \sqrt{3}$ (D) $-3 + \sqrt{3}$	
4	Part of the graph $y = P(x)$, where $P(x)$ is a polynomial of degree four is shown below.	1
	Which of the following could be the polynomial $P(x)$?	
	(A) $P(x) = x(x-2)^3$ (B) $P(x) = (x-2)^3(x+3)$ (C) $P(x) = (2-x)^3(3-x)$ (D) $P(x) = (x-1)(x-2)^3$	
	End of Section 1	
	Section 2 – Extended Response Attempt all questions on the appropriate page of your answer booklet. Show all necessary working.	
5	When the polynomial $P(x) = x^3 + ax^2 - 4x + 1$ (where a is a constant) is divided by $x - 1$, the remainder is 2. What is the remainder with $P(x)$ is divided by $2x - 1$?	2

Prove by Mathematical Induction that $3^{2n+4} - 2^{2n}$ is divisible by 5 for all positive integers n
integers n

3

7 The graph below shows all the important features of a polynomial. Find an equation for this polynomial.

3

 α , β and γ are the roots of $2x^3 - 6x^2 + x - 9 = 0$. Evaluate: 8

(i)
$$\alpha + \beta + \gamma$$

(ii)
$$\alpha\beta + \beta\gamma + \gamma\alpha$$

(ii)
$$\alpha\beta + \beta\gamma + \gamma\alpha$$

(iii) $\alpha^{-1} + \beta^{-1} + \gamma^{-1}$
(iv) $\alpha^2 + \beta^2 + \gamma^2$

(iv)
$$\alpha^2 + \beta^2 + \gamma^2$$

2

- Given $P(x) = 2x^3 + 7x^2 46x + 21$: 9
 - Show that x 3 is a factor of P(x)(i)

1 2

- Fully factorise P(x)(ii)
- Hence or otherwise, solve: $2x^3 + 7x^2 46x + 21 \ge 0$ (iii)
- 2

Solve the inequality: (iv)

$$\frac{2x^3 + 7x^2 - 46x + 21}{x} > 0$$

2

10

Prove by Mathematical Induction that
$$\frac{1}{1.2.3} + \frac{1}{2.3.4} + \frac{1}{3.4.5} + \dots + \frac{1}{n(n+1)(n+2)} = \frac{n(n+3)}{4(n+1)(n+2)}$$

4

for all positive integers n.

For $P(x) = x^3 + ax^2 + 2ax + b$, where a and b are constants, the roots are $x = 2, -3, \gamma$. 11 Find the value of a, b and γ .

4

- If $P(x) = x^4 6x^3 + x^2 4x 4$ and $A(x) = x^2 + x + 1$: 12
 - Find the quotient and remainder when P(x) is divided by A(x)

2

Hence find **two** possible polynomials L(x) such that $x^2 + x + 1$ is a factor of (ii) P(x) + L(x)

2

End of Task

MuH. Choice -, - + B - 2 C - 3-C 4 C -
- HSC Task 1; Ext. 1 ~Q5 & 6 - page 1 ~
Question 5 2013 BOS#: SOLUTIONS.
-P(1) = 1 + a - 4 + 1 = 2
a-2=2
$-\frac{1}{a=4}$
$P(z) = z^3 + 4z^2 - 4x + 1$
Remainder = $P\left(\frac{1}{2}\right) = \frac{1}{8} + 1 - 2 + 1$
= 1/8
/
,
Question 6
$4 + n = 1 + 3^{2n+4} - 2^{2n} = 3^{6} - 2^{2}$
= 729 - 4
= 725 which is divisible by s
i. True for n=1
Assume true for $n=k$. ie Assume: $-3^{2k+4}-2^{2k}=5m$ for some integer m .
Now need to place true for n=k+1: 32(k+1)+4 - 22(k+1) = 32k+6 - 22k+2
$= 3^2 \cdot 3^{2k+4} - 2^2 \cdot 2^{2k}$
$=9(3^{2k+4})-4(2^{2k})$
$= 9(3^{2k+4} - 2^{2k}) + 5(2^{2k})$ by assumption
$= 9(5m) + 5(2^{2k})$
$= 5 (9m + 2^{2k})$
$= 5 p \text{where } p = 9m + 2 in$ $q_n \text{integer}.$

If the for n=k, then also true for n=k+1	
Statement is true for n=1 : Also true for n=2,3,4. and by induction,	
true for all positive integers n. (n=1, assump, cond.) — 1	
Mult. Choice: Working	
1. The larger degree = n (B)	
2. $P(2) = 16 - 36 + 26 + k = 0$ $k = -6$	
$P(x) = 2x^3 - 9x^2 + 13x - 6$ $P(\frac{1}{2}) \neq 0$	
P(-1) ±0	
$P(1) = 0 \qquad \therefore x-1 \text{ is a factor}$	
(C)	
3. 0+B+2-53=5	
$\alpha + \beta = 5 - 2 + \sqrt{3} = 3 + \sqrt{3} \bigcirc$	
A C 2 3	
B	
<u>C</u>	

You may ask for extra writing paper if you need more space to answer question 5 & 6

Question 7

BOS#:__

$y = a(2+1)(x-3)^2$ 5ub. (0,3)	$-1 for (241)$ $-1 for (x-3)^2$
$3 = a \times 1 \times (-3)^{2}$ $3 = 9a$	
$a = \frac{1}{3}$	/
$y = \frac{1}{3}(x+1)(x-3)^2$	

Question 8

$$2x^{3} - 6x^{2} + x - 9 = 0$$

$$(1) \quad \angle + \beta + \gamma = \frac{-b}{\alpha} = \frac{6}{2} = 3$$

$$(11) \quad \angle \beta + \beta \gamma + \gamma \alpha = \frac{c}{\alpha} = \frac{1}{2}$$

$$(111) \quad \angle \beta + \beta \gamma + \gamma \alpha = \frac{c}{\alpha} = \frac{1}{2}$$

$$(111) \quad \angle \beta + \beta \gamma + \gamma \alpha = \frac{c}{\alpha} = \frac{1}{2}$$

$$(111) \quad \angle \beta + \beta \gamma + \gamma \alpha = \frac{c}{\alpha} = \frac{1}{2}$$

$$= \frac{1}{2}$$

```
P(x) = 2x^3 + 7x^2 - 46x + 21
```

(i)
$$P(3) = 2(3)^3 + 7(3)^2 - 46(3) + 21$$

$$= 0$$
 $= 0$ $= x - 3$ $= a$ fucto

(ii)
$$2x^2 + 13x - 7$$
 (
 $x-3$) $2x^3 + 7x^2 - 46x + 2$)

$$2x^3 - 6x^2$$

$$13x^{2} - 46x$$

$$-7x + 21$$

$$P(x) = (2-3)(2x^2+13x-7) - 1$$

$$= (x-3)(2x-1)(x+7)$$

(111)y = 2

P(x) 20

(IV) Fraction >0 numerator + denom. have the

Question 10

BOS#:_

$If n = 1, LHS = \frac{1}{1.2.3} = \frac{1}{6}$
LHS = RHS
$RHS = \frac{1 \times 4}{4 \times 2 \times 3} = \frac{4}{24} = \frac{1}{6}$
: True for n=1
Assume true for n=k:
ie Assume
$\frac{1}{1.2.3} + \frac{1}{2.3.4} + \frac{1}{3.4.5} + \dots + \frac{1}{k(k+1)(k+2)} + \frac{k(k+3)}{4(k+1)(k+2)}$
Prove true for n=k+1
ie Prove
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
$\frac{1}{1.2.3} + \frac{1}{2.3.4} + \frac{1}{3.4.5} + \frac{1}{k(k+1)(k+2)} + \frac{1}{(k+1)(k+2)(k+3)}$
= (k+1)(k+4)
4(k+2)(k+3)
LHS = k(k+3) by
4(k+1)(k+2) $(k+1)(k+2)(k+3)$ assumption
= k(k+3) + 4
4(k+1)(k+2)(k+3)
$= k^3 + 6k^2 + 9k + 4$
4 (k+1)(k+2)(k+3)
No 1 sector la sector d' 711 siens
Now numerator has a factor of $2+1$, since $(-1)^3 + 6(-1)^2 + 9(-1) + 4 = -1 + 6 - 9 + 4 = 0$

You may ask for extra writing paper if you need more space to answer question 10

Question 11

BOS#:_____

	2-317 =	-a	7=1-a	
	-6-3y+27	= 2a	$-\gamma = 2a+6$	
	-6y =	= -b	$\gamma = -2a - 6$	
			b=67	3)
From	(1), (2)		- 6	
			7 0	
Into	()		7 = 8	
Into	3	b = 6(8)	= 48	- 1
		,		
	_		-	

You may ask for extra writing paper if you need more space to answer question 11

BOS#:____

	x^2-7x+7	- quotien	+ /
2 X + X + 1	$\int x^{4} - 6x^{3} + x^{2} - 4x - 4$		
	$x^4 + x^3 + x^2$		
	$-7x^3$ $-4x$		
	$-7x^{3}-7x^{2}-7x$		
	$7x^2 + 3x - 4$		
	$7x^2 + 7x + 7$		
	$-4x$ -11 \leftarrow	- remaine	de /
(ii) Any	two expressions equiv	ident to	
	$k(x^2+x+1)+4x+11$	(k	= integer)
Expec	ted answers:	· ·	
(k=0)	42+11		
(k=1)	$x^{2} + 5x + 12$		(any two)
,	$2x^2 + 6x + 13$		(()
_ OR	S(x) (x2+2+1) +42+11	whee	5(2) 13
*		a P	olynomial.
	4		

You may ask for extra writing paper if you need more space to answer question 12